Cumulative Area Test (CAT)

A randomization test for measuring ranking ability of prospect appraisal predictions.
The CAT statistic is given by:

$$
\boldsymbol{C A T}=\sum_{i=1}^{n} \sum_{k=1}^{i} \boldsymbol{x}_{\boldsymbol{k}}-\frac{1}{2} \boldsymbol{n}(\boldsymbol{n}+1) \overline{\boldsymbol{x}}
$$

The sum of CAT values under all n ! permutations is:

The above expansion of the CAT statistic under permutation forms a table with $n!$ lines. The first term in each line can have the index 1 in only ($n-1$)! cases, it occurs in the second term also in ($n-1$)! cases, etc. The sum therefore becomes:

$$
\sum_{m=1}^{n!} C A T=(n-1)!n \sum_{i=1}^{n} x_{i}+(n-1)!(n-1) \sum_{i=1}^{n} x_{i}+\cdots-\frac{1}{2} n(n+1) \bar{x} n!
$$

Division by n ! results in:

$$
\begin{aligned}
& \mu=\frac{(n-1)!\frac{1}{2} n(n+1) \sum_{i=1}^{n} x_{i}-\frac{1}{2} n(n+1) \bar{x} n!}{n!}= \\
& \mu=\frac{1}{2} n(n+1) \bar{x}-\frac{1}{2} n(n+1) \bar{x}=0
\end{aligned}
$$

as expected from symmetry considerations.
The variance of CAT under the n ! permutations is derived by calculating the second moment. We count all permutations of:

$$
\left[n x_{1}+(n-1) x_{2}+\cdots x_{n}\right]^{2}
$$

Expanding the expression and writing out all the possible permutations of the indexes gives a table with n ! rows. In each row there are n squares (e.g. \boldsymbol{x}_{1}^{2}) and $1 / 2 \boldsymbol{n}(\boldsymbol{n}-1)$ cross-products (e.g. $\boldsymbol{x}_{1} \boldsymbol{x}_{2}$). The sum of all the squares under permutation becomes:

$$
\begin{aligned}
& (n-1)!n^{2} \sum_{i=1}^{n} x_{i}^{2}+(n-1)!(n-1)^{2} \sum_{i=1}^{n} x_{i}^{2}+\cdots+(n-1)!\sum_{i=1}^{n} x_{i}^{2}= \\
& (n-1)!\frac{1}{6} n(n+1)(2 n+1) \sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

The sum of the cross products is derived by considering a cross-product term in a particular position in a line. A particular combination of indexes (e.g. 1 and 2) in a particular term occurs in only ($\mathrm{n}-2$)! lines out of the n ! lines in total. For $n=4$ such a line in the table would look as follows:

$$
24 x_{1} x_{2}+16 x_{1} x_{3}+12 x_{1} x_{4}+8 x_{2} x_{3}+6 x_{2} x_{4}+4 x_{3} x_{4}
$$

The line contains cross-products proper and coefficients. The coefficients are forming all possible products of $\mathbf{2} \cdot \boldsymbol{i} \cdot \boldsymbol{j}$ where $\boldsymbol{i} \neq \boldsymbol{j}$. So for a particular cross-product $\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{j}}$ the sum of the coefficients can be expressed as:

$$
(n-2)!2\left[\left(\sum_{i=1}^{n} \boldsymbol{i}\right)^{2}-\sum_{i=1}^{n} i_{i}^{2}\right]
$$

and the sum of the cross-products as:

$$
(n-2)!2\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}-\sum_{i=1}^{n} x_{i}^{2}\right]
$$

making the sum :

$$
2(n-2)!\frac{3 n^{2}(n+1)^{2}-2 \boldsymbol{n}(n+1)(2 n+1)}{24}\left[\left(\sum x\right)^{2}-\sum x^{2}\right]
$$

Taking the sum over n ! of the squares and the cross products and dividing by $\mathrm{n}!\mathrm{gives}$:

$$
\begin{gathered}
\operatorname{var}(C A T)=\frac{n(n+1)}{12} \sum x^{2}+\frac{(n+1)(3 n+2)}{12}\left(\sum x\right)^{2}-\frac{1}{4} n^{2}(n+1)^{2} \bar{x}^{2} \\
\operatorname{var}(\boldsymbol{C A T})=\frac{1}{12} \boldsymbol{n}^{2}(n+1) \operatorname{var}(x)
\end{gathered}
$$

